Uniqueness in an Inverse Problem for One-dimensional Fractional Diffusion Equation
نویسندگان
چکیده
We consider a one-dimensional fractional diffusion equation: ∂α t u(x, t) = ∂ ∂x ( p(x) ∂u ∂x (x, t) ) , 0 < x < `, where 0 < α < 1 and ∂α t denotes the Caputo derivative in time of order α. We attach the homogeneous Neumann boundary condition at x = 0, ` and the initial value given by the Dirac delta function. We prove that α and p(x), 0 < x < `, are uniquely determined by data u(0, t), 0 < t < T . The uniqueness result is a theoretical background in experimentally determining the order α of many anomalous diffusion phenomena which are important for example in the environmental engineering. The proof is based on the eigenfunction expansion of the weak solution to the initial value/boundary value problem and the Gel’fand-Levitan theory. §
منابع مشابه
Existence and uniqueness in an inverse source problem for a one-dimensional time-fractional diffusion equation
In this study, an inverse source problem for a one-dimensional timefractional diffusion equation is considered. An existence theorem based on the minimization of an error functional between the output data and the additional data is proved. Then it is showed that the unknown source function can be determined uniquely by an additional data u(0, t), 0 ≤ t ≤ T using an auxiliary uniqueness result ...
متن کاملOn the Inverse Problem for a Fractional Diffusion Equation
We consider the inverse problem of finding the temperature distribution and the heat source whenever the temperatures at the initial time and the final time are given. The problem considered is one dimensional and the unknown heat source is supposed to be space dependent only. The existence and uniqueness results are proved.
متن کاملA Uniqueness Result for an Inverse Problem in a Space-time Fractional Diffusion Equation
Fractional (nonlocal) diffusion equations replace the integer-order derivatives in space and time by fractional-order derivatives. This article considers a nonlocal inverse problem and shows that the exponents of the fractional time and space derivatives are determined uniquely by the data u(t, 0) = g(t), 0 < t < T . The uniqueness result is a theoretical background for determining experimental...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملExiststence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation
In this paper we investigate a kind of boundary value problem involving a fractional differential equation. We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...
متن کامل